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2018 2019 2020 2021 2022 2023 2024

What is the trend of the dataset size in modern ML / AI ?

2

BERT-Lrge (3.3B) GPT-2 (40B) GPT-3 (300B) Megtron-Turing (3.9T) GPT-4 (13T)
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What about the size of the model? (# of parameters)

3

ElMo (94M)

BERT-Lrge (340M)

GPT-2 (1.5B)

Megtron-LM (8.3B)

Turing-NLG (17.2B)

GPT-3 (175B)
Megtron-Turing (530B)

GPT-4 (1.75T)

Llm-3 (80B)

🧐 How to optimize the loss efficiently nd robustly? 
🤔 Cn we modify the model without losing much?
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What about Quantum Computing?

4

× 6# qubits

1.26765 × 1030

complex numbers required to 
describe the system classically!

× 100 ⇒

🧐 How to process meningfully in the current er? 
🤔 How to even store this mount of dt? 



Junhyung Lyle Kim Algorithmic, Structural, and Pragmatic Acceleration Techniques in ML and QC

Exploding Data: Stochastic Gradient Descent (SGD)

5

Xt+1 = Xt − η∇f (Xt)Gradient Descent: ∇f(Xt) =
1
n

n

∑
i=1

∇fi(Xt)

Xt+1 = Xt − η∇fit (Xt)Stochastic Gradient Descent: ≈ ∇fit(Xt)

•  too smll: SGD tkes  long time to convergeη

•  too lrge: SGD numericlly unstble / divergeη

Number of data

Size of model 

 evaluated at  
with -th data point
f( ⋅ ) X

i

min
X∈ℝp×p

f(X) =
1
n

n

∑
i=1

fi(X)

BUT: 

• Adptive step-size

• Proximl/implicit updte}
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Exploding model parameter: Factored GD

6

Factored Gradient Descent: Ut+1 = Ut − η∇f (UtU⊤
t ) ⋅ Ut

Represent   X = UU⊤
min

U∈ℝp×r
f(UU⊤) =

1
n

n

∑
i=1

fi(UU⊤)Low-rank Matrix Factorization:

Number of data

Size of model 

 evaluated at  
with -th data point
f( ⋅ ) X

i

min
X∈ℝp×p

f(X) =
1
n

n

∑
i=1

fi(X)

Xt+1 = Xt − η∇f (Xt)Gradient Descent:

• Stochsticity

• Distributed

• Momentum

}
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Road Map: Algorithmic, Structural, and Pragmatic Acceleration

7

Stochastic Proximal Point Method 
with Momentum 
 
Keyword: implicit method, acceleration, stability 
 
[J. L. Kim, P. Toulis, A. Kyrillidis. “Convergence and Stability of the  
Stochastic Proximal Point Algorithm With Momentum,” L4DC 2022]

PrgmticAlgorithmic



8

“Convergence and Stability of the  
Stochastic Proximal Point Algorithm With 
Momentum”

J. L. Kim (Rice CS) 
P. Toulis (UChicago Booth) 
A. Kyrillidis (Rice CS)

Published in “Learning for Dynamics and Control Conference” (L4DC), 2022.



Junhyung Lyle Kim Algorithmic, Structural, and Pragmatic Acceleration Techniques in ML and QC

Empirical risk minimization and SGD/SGDM

9

xt+1 = xt − η∇fit (xt)

1. SGD can take long to converge GD:  f (xt) − f ⋆ = O ( 1
t )

SGD:  f (xt) − f ⋆ = O ( 1

t )

[Bach and Moulines (2011). “Non-Asymptotic Analysis of Stochastic Approximation Algorithms for Machine Learning”]

𝔼∥xt − x⋆∥2
2 ≤ 2 exp(4L2η2

1 log(t))∥x0 − x⋆∥2
2 ⋯

2. SGD can be numerically 
unstable if step size is misspecified

BUT: 

∇f(xt) =
1
n

n

∑
i=1

∇fi(xt) ≈ ∇fit(xt)

f(x) =
1
n

n

∑
i=1

fi(x)
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Empirical risk minimization and SGD/SGDM

10

xt+1 = xt − η∇fit (xt) +β(xt − xt−1)
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Geometric intuition of momentum

11

Gradient Descent

Gradient Descent with Momentum

xt+1 = xt − η∇f (xt)
xt+1 = xt − η∇f (xt) + β(xt − xt−1)
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Empirical risk minimization and SGD/SGDM

12

BUT: 

1. SGDM/accelerated SGD may diverge for step sizes that SGD converges
[Liu and Belkin  (2019).  “Accelerating SGD with momentum for over-parameterized learning”] 

[Kidambi,  Rahul et al. (2018).  “On  the  insufficiency of existing momentum schemes for Stochastic Optimization”]

2. Accelerated SGD may diverge even for quadratic objectives with usual                   
choices of  and η β [Assran and Rabbat (2020). “On the Convergence of Nesterov’s Accelerated Gradient Method in Stochastic Settings”]

Momentum parameter

Is there other method that is numerically stable AND fast? 

xt+1 = xt − η∇fit (xt) +β(xt − xt−1)
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Stochastic proximal point algorithm

13

xt+1 = arg min
x∈ℝp {f(x)+ 1

2η ∥x − xt∥2
2}

xt+1 = xt − η∇f (xt+1)

f(x) =
1
n

n

∑
i=1

fi(x)
it

it

• SPPA enjoys the same convergence rate as SGD 
• SPPA is much more numerically stable

SGD : 𝔼∥xt − x⋆∥2
2 ≤ 2 exp(4L2η2

1 log(t))∥x0 − x⋆∥2
2 ⋯

SPPA : 𝔼∥xt − x⋆∥2
2 ≤ exp(−log(1 + 2η1μ)log(t))∥x0 − x⋆∥2

2 ⋯

[Ryu and Boyd (2017). “Stochastic Proximal Iteration: A Non-Asymptotic Improvement Upon Stochastic Gradient Descent”] 
[Toulis et al. (2021) “The proximal Robbins–Monro method”]

Can we accelerate SPPA while preserving numerical stability? 
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xt+1 = xt − η (∇f(xt+1) + εt+1) + β (xt − xt−1)

arg min
x∈ℝp {f(x)+ 1

2η ∥x − xt∥2
2 − β

η ⟨xt − xt−1, x⟩}
• Disregarding the stochastic error for simplicity, above can be written as the solution to:

SPPAM : Stochastic Proximal Point Algorithm with Momentum
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SPPAM: theoretical analysis

15

[
𝔼∥xt+1 − x⋆∥2

2

𝔼∥xt − x⋆∥2
2 ] ≤ A ⋅ [ 𝔼∥xt − x⋆∥2

2

𝔼∥xt−1 − x⋆∥2
2] + [η2σ2

0 ] A =
4

(1 + ημ)2

4β2

(1 + ημ)2(4 − (1 + β)2)
1 0

Corollary 1: For -strongly convex , SPPAM enjoys smaller 
contraction factor than SPPA if:

μ f

4β2

4 − (1 + β)2
<

η2μ2 − 6ημ − 3
(1 + ημ)2

VS. Contraction factor of SPPA:  
1

1 + 2ημ
≈ O ( 1

η )

≈ O ( 1
η2 )

Acceleration

Theorem 1: Suppose Assumptions 1 and 2 hold. SPPAM satisfies the following iteration invariant bound: 

𝔼[∥xt+1 − x⋆∥2
2] ≤

4
(1 + ημ)2

𝔼[∥xt − x⋆∥2
2] +

4β2

(1 + ημ)2(4 − (1 + β)2)
𝔼[∥xt−1 − x⋆∥2

2] + η2σ2

Assumption 2: For SPPAM, there exists fixed  such that, 
given the natural filtration ,

σ2 > 0
ℱt−1

𝔼 [εt ∣ ℱt−1] = 0 and 𝔼 [∥εt∥2 ∣ ℱt−1] ≤ σ2 for all t .

Assumption 1: The objective function  is a -strongly convex 
function. That is, for some fixed  and for all  and , 

f μ
μ > 0 x y

⟨∇f(x) − ∇f(y), x − y⟩ ≥ μ∥x − y∥2
2

Lemma: The maximum eigenvalue of , which determines 
the convergence rate of SPPAM, is:

A

2
(1 + ημ)2

+
4

(1 + ημ)4
+

4β2

(1 + ημ)2(4 − (1 + β)2)
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Theorem 2: Suppose Assumptions 1 (  is -strongly convex) 
and 2 hold. Further, suppose that SPPAM is initialized with 

. Then, after  iterations, SPPAM satisfies:

f μ

x0 = x−1 T

𝔼∥xT − x⋆∥2
2 ≤

2σT
1

σ1 − σ2 ((∥x0 − x⋆∥2
2 + η2σ2

1 − θ ) ⋅ (1 + θ)) +
η2σ2

1 − θ
,

where . Further,  are the 

eigenvalues of , and

θ = 4
(1 + ημ)2 + 4β2

(1 + ημ)2(4 − (1 + β)2)
σ1,2

A
2σT

1

σ1 − σ2
= τ−1 ⋅ ( 2

(1 + ημ)2
+ τ)

T

with τ =
4

(1 + ημ)4
+

4β2

(1 + ημ)2(4 − (1 + β)2)
.

SPPAM: theoretical analysis

16

[
𝔼∥xt+1 − x⋆∥2

2

𝔼∥xt − x⋆∥2
2 ] ≤ A ⋅ [ 𝔼∥xt − x⋆∥2

2

𝔼∥xt−1 − x⋆∥2
2] + [η2σ2

0 ]

Stability (w.r.t. hyperparameters)

🧐 Easy to satisfy? 

Accelerated SGD (strongly convex quadratic):  
 

 for 0.0028 ≈ 1
361 ≤ ηλ ≤ 24

19 ≈ 1.26 λ ∈ {μ, L}

SPPAM (strongly convex): 
 with ημ > 4.81 β = 0.9

Unfair comparison [Assran and Rabbat (2020)]

Corollary 2: Suppose the following condition hold:

τ = 4
(1 + ημ)4 + 4β2

(1 + ημ)2(4 − (1 + β)2)
<

1
2

.

Then, under Assumptions 1 and 2, the initial conditions of 
SPPAM exponentially discount. That is,

2σT
1

σ1 − σ2
= τ−1 ⋅ ( 2

(1 + ημ)2
+ τ)

T

= CT, where C ∈ (0,1) .

[ 𝔼∥xT − x⋆∥2
2

𝔼∥xT−1 − x⋆∥2
2] ≤ AT ⋅ [ ∥x0 − x⋆∥2

2

∥x−1 − x⋆∥2
2] + (

T−1

∑
i=1

Ai) [1
0] η2σ2 .
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Experiments

17

1. SPPAM converges faster when SPPA converges (acceleration) 
2. SPPAM converges at the same rate as SGDM when the latter converges but for much wider range (stability)
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3. Above holds both in theory and practice

1. Acceleration SPPAM converges faster than SPPA

2. Stability SPPAM converges for wider range of  
hyperparameters than SGD/SGDM

“Convergence and Stability of the  
Stochastic Proximal Point Algorithm With Momentum”

J. L. Kim, P. Toulis, A. Kyrillidis., L4DC 2022.

But wht if we cnnot implement      ?xt+1 = xt − η∇f(xt+1)
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Road Map: Algorithmic, Structural, and Pragmatic Acceleration

19

Stochastic Proximal Point Method 
with Momentum 
 
Keyword: implicit method, acceleration, stability 
 
[J. L. Kim, P. Toulis, A. Kyrillidis. “Convergence and Stability of the  
Stochastic Proximal Point Algorithm With Momentum,” L4DC 2022]

Adaptive Federated Learning with  
Auto-Tuned Clients 
 
Keyword: adaptive step-size, federated learning 
 
[J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. “Adaptive 
Federated Learning with Auto-Tuned Clients”, ICLR 2024]

“Plug-nd-ply” 

Adptive step size

PrgmticAlgorithmic

PrgmticStructurl
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“Adaptive Federated Learning with  
Auto-tuned Clients”

J. L. Kim (Rice CS) 
M. T. Toghani (Rice ECE) 
C. A. Uribe (Rice ECE) 
A. Kyrillidis (Rice CS)

To appear in “International Conference on Learning Representations” (ICLR), 2024.
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What is Federated Learning?

21

Image source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Download current model  
from the server to local clients/machines

Server side: Aggregate locally 
updated model parameters

Update the server model 
and repeat…

• Distributed ML framework where a global model is trained via multiple collaborative steps by 
participating clients, without sharing data (E.g., next word prediction in smartphone).

Client side: Update model  
using local data
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What is Federated Learning?

22

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x)

Number of clients

Shared model parameter Individual loss function: 

fi(x) := 𝔼z∼𝒟i
[Fi(x, z)]
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Why Federated Learning?

23

• Number of clients  

• Client participation rate 

• Computing power

m

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x)

Flexiblity Privacy

• Local data never shared

← 𝔼z∼𝒟i
[Fi(x, z)]

•  differs for each client  

• Also number of samples 

𝒟i i

z ∼ 𝒟i

 differs for ech client fi( ⋅ ) i
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Most famous FL algorithm: Federated Averaging

24
Image source: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

Server side: Aggregate locally 
updated model parameters

Client side: Update model  
using local data

SGD 

Averaging 

[McMahan et al., 2017 “Communication-Efficient Learning of Deep Networks from Decentralized Data.”]
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Main challenges in Federated Learning

25

Client side: How do we make sure 
each client meaningfully “learns” using 
local data?

Server side: How do we smartly aggregate the local information 
coming from each participating client?

Does it make sense to use “same” 
 for all clients? η

E.g., How do we tune ? η

If not, how do we tune individual 
step size ?ηi
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Federated optimization framework

26

[“Adaptive Federated Optimization” Reddi et al. (2021)]

= xt −
1

|𝒮t | ∑
i∈𝒮t

(xt − xi
t,K)

⏟“Pseudo-gradient”

• FedAdam 
• FedAdagrad 
• FedYogi

• Communication is expensive 

• Many more local updates 
compared to server update

What about client optimizer? 

Typically 3-4 orders of magnitude  
more expensive than local computation 
[G. Lan, et al., 2020]
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Client optimization is more challenging…?

27

• FedAvg: grid-search of typically 11-13 client SGD step sizes 
• FedAdam*: grid-search of 6 different client step sizes (best usually different for each task) 
• Above assume the same step size is used for all clients (can we do better?) 
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Our proposed step size for -SGDΔ

28

ηi
t = min { ∥xi

t − xi
t−1∥

2∥∇fi(xi
t) − ∇fi(xi

t−1)∥
, 1 + θi

t−1ηi
t−1}, θi

t−1 = ηi
t−1/ηi

t−2

• Each client uses its own step size 
• Step size only requires known quantities (i.e., no tuning required)  

• Individual step size is adaptive to the local smoothness of  fi

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x) ← 𝔼z∼𝒟i
[Fi(x, z)]

xi
t+1 = xi

t − ηi
t ∇fit(x

i
t)Client  local updates: i

Adapts to local smoothness: ∥∇fi(xi
t) − ∇fi(xi

t−1)∥ ≤
1

2ηi
t
∥xi

t − xi
t−1∥ ≈ Li

t∥xi
t − xi

t−1∥

Don’t increase too much!
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Extension to FL setting: -SGDΔ

29

We can apply server-side adaptive method too 
from [“Adaptive Federated Optimization” Reddi et al. (2021)]
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-SGD step size in practiceΔ

30

ηi
t,k = min { γ∥xi

t,k − xi
t,k−1∥

2∥∇̃fi(xi
t,k) − ∇̃fi(xi

t,k−1)∥
, 1 + δθi

t,k−1ηi
t,k−1}
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Theorem 1: Let Assumption 1 hold, with . Further, suppose that , and . 

Then, the following property holds for Algorithm -SGD, for  sufficiently large:

ρ = 𝒪(1) γ = 𝒪( 1

K T ) η0 = 𝒪(γ)
Δ T

1
T

T−1

∑
t=0

𝔼 ∇f (xt)
2

≤ 𝒪 ( Ψ1

T ) + 𝒪 ( L̃2Ψ2

T ) + 𝒪 ( L̃3Ψ2

T3 ),

where  and  are global constants, with  being the 

batch size;  is a constant at most the maximum of local smoothness, i.e.,  where  the local 

smoothness of  at round .

Ψ1 = max { σ2

b , f(x0) − f(x⋆)} Ψ2 = ( σ2

b +G2) b = |ℬ |

L̃ max
i,t

L̃i,t, L̃i,t

fi t

Assumption 1: There exist nonnegative constants  and  such that for all  and , σ, ρ, G i ∈ [M] x ∈ ℝd

𝔼∥∇Fi(x, z) − ∇fi(x)∥2 ≤ σ2, (bounded variance)
∥∇fi(x)∥ ≤ G, (bounded gradient)

∥∇fi(x) − ∇f(x)∥2 ≤ ρ∥∇f(x)∥2. (strong growth of dissimilarity)

(1a)
(1b)
(1c)

-SGD: Convergence analysisΔ

31

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x), where fi(x) = 𝔼z∼𝒟i
[Fi(x, z)]
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Experimental setup

32

• Datasets: MNIST, FMINIST, CIFAR-10, and CIFAR-100 

• Architecture: shallow CNN, ResNet-18, and ResNet-50 

• Level of heterogeneity: latent Dirichilet allocation (LDA), α ∈ {1, 0.1, 0.01}
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Step size grid serch  
done in this setting

Green: < 0.5% from  
best performance

(x.x): performance 
difference from the best 
highlighted when > 2%

TOP-1 in 73%, TOP-2 in 100% of the experiments without dditionl tuning

Results
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“Adaptive Federated Learning with Auto-tuend Clients”
J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. ICLR 2024.

2. Setup / Modeling:  
    Federated/Collaborative protocal that allows local updates

3. Practical Importance:  
    Extensive experimental results achieving better or similar  
    performance across different FL scenarios without tuning

1. Algorithmic:  
    Adaptive SGD scheme that utilize the local smoothness
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Road Map: Algorithmic, Structural, and Pragmatic Acceleration

35

Accelerated Factored Gradient Descent 
 
Keyword: non-convex, matrix factorization 
 
[J. L. Kim, G. Kollias, A. Kalev, K. X. Wei, A. Kyrillidis. “Fast Quantum  
State Reconstruction via Accelerated Non-Convex Programming” 
Photonics 2023 / Quantum Information Processing (QIP) 2023 (poster)]

Stochastic Proximal Point Method 
with Momentum 
 
Keyword: implicit method, acceleration, stability 
 
[J. L. Kim, P. Toulis, A. Kyrillidis. “Convergence and Stability of the  
Stochastic Proximal Point Algorithm With Momentum,” L4DC 2022]

Local Stochastic Factored Gradient Descent 
 
Keyword: distributed optimization, local updates 
 
[J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. “Local Stochastic  
Factored Gradient Descent for Distributed Quantum State Tomography” 
Control Systems Letters (L-CSS), IEEE 2022 / Quantum Information Processing (QIP) 2023 (poster)]

Adaptive Federated Learning with  
Auto-Tuned Clients 
 
Keyword: adaptive step-size, federated learning 
 
[J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. “Adaptive 
Federated Learning with Auto-Tuned Clients”, ICLR 2024]

“Plug-nd-ply” 

Adptive step size

“Momentum”

“Distributed  
Optimiztion” 

Prgmtic

Appliction: 

Quntum Stte Tomogrphy 

Algorithmic Structurl Algorithmic

PrgmticStructurl PrgmticStructurl
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“Fast Quantum State Reconstruction via 
Accelerated Non-convex Programming”

J. L. Kim (Rice CS), M. T. Toghani (Rice ECE), C. A. Uribe (Rice ECE), A. Kyrillidis (Rice CS)

Published in Photonics, 2023.

J. L. Kim (Rice CS), G. Kollias (IBM), A. Kalev (USC), K. X. Wei (IBM), A. Kyrillidis (Rice CS)

“Local Stochastic Factored Gradient Descent for 
Distributed Quantum State Tomography”

Published in Control System Letters, 2022.
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Quantum State Tomogrpahy (QST)

• Electrical engineers use multimeters and oscilloscopes to verify that circuit works as expected.  

• We need similar verification tools in quantum computing. QST is one such tool. 

• QST is the task to reconstruct the density matrix of a given quantum state from measurement data.

37

I hve  quntum  
stte  in mindρ

• Expecttion vlue of  
 in this bsis is 0.64… 

• More dt…

ρρ ̂ρ≈?
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[Figure source: https://qiskit.org/textbook/ch-states/introduction.html]

Quantum State

38

• We represent quantum bits (qubits)  and  as vectors:  
 

                         

• A state  can be written as a superposition of  and ,    
e.g.,  

• 2-qubit state : 
 

             

• A pure state of  qubits can be represented by column vectors in  
space with 

|0⟩ |1⟩

|0⟩ = [1
0], |1⟩ = [0

1]
|ψ⟩ |0⟩ |1⟩

|ψ⟩ = α |0⟩ + β |1⟩

|ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩

|ψ⟩ = α

1
0
0
0

+ β

0
1
0
0

+ γ

0
0
1
0

+ δ

0
0
0
1

n ℂd

d = 2n

Outcome  w.p. |1⟩ |β |2
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What about Quantum Computing?

39

× 6# qubits

1.26765 × 1030

complex numbers required to 
describe the system classically!

× 100 ⇒

🧐 How to process meningfully in the current er? 
🤔 How to even store this mount of dt? 
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Quantum State and Density matrix

40

•  is a column vector, called “ket” 

• is a row vector, called “bra”, with complex 
conjugates 

• Inner product:  is a number 

• Outer product: is a matrix 

‣ A pure state  can be written as  

‣ A mixed state can be written as 

|ψ⟩

⟨ψ |

⟨ϕ |ψ⟩

|ϕ⟩⟨ψ |

|ψ⟩ ρ = |ψ⟩⟨ψ |

ρ = ∑
i

pi |ψi⟩⟨ψi |

E.g.   |ψ⟩ =

1

2
i

2

→ ⟨ψ | = [ 1

2

−i

2 ]

Density matrix  

• PSD:  

• Unit trace: 

ρ
ρ ⪰ 0

Tr(ρ) = 1
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How does it scle? 

• Optimization: the space of  grows exponentially  
( , where  is the number of qubits) 

• Amount of data: from , if we have access to  

and  that form an orthonormal basis for   

(i.e. ), we can reconstruct  with linear inversion

ρ ∈ ℂd×d

d = 2n n

𝒜(ρ) = y y1, …, ym
A1, …, Am ℂd×d

m = d2 ρ

41

QST objective

  where  (𝒜(ρ))i
= Tr(ρAi) Ai ∈ ℂd×d, i = 1,…, m

measured data 

We need 
  

measurements
m = O (232) ≈ 4,294,967,296

For  qubits,  
where  

n = 16 ρ ∈ ℂd×d

d = 65,536

minimize
ρ∈ℂd×d

F(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, Tr(ρ) = 1
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Structured density matrices

GHZ GHZminus Hadamard Random

• Optimization:  where  
• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)
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Compressive sensing + QST

[D. Gross et al., 2010]: can reconstruct rank-  density matrix  using  measurementsr ρ ∈ ℂd×d O (r ⋅ d ⋅ poly(log d))
[Y.K. Liu, 2010]:  satisfies RIP for rank-  matricesPi ∈ {I, σx, σy, σz}⊗n r

Restricted Isometry Property (RIP) for rank-  matrices 

A linear operator  satisfies the RIP on rank-  matrices, 
with parameter , if the following holds for any rank-  matrix 

, with high probability: 

r

𝒜 : ℂd×d → ℝm r
δ2r ∈ (0,1) r

X ∈ ℂd×d

(1 − δ2r) ⋅ ∥X1 − X2∥2
F ≤ ∥𝒜(X1 − X2)∥2

2 ≤ (1 + δ2r) ⋅ ∥X1 − X2∥2
F.

[B. Recht et al., 2010]

 constraint can be removed 
without affecting the final estimate

Tr(ρ) = 1
[Kalev et al., 2015]:

• Optimization:  where  
• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)

minimize
ρ∈ℂd×d

F(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to rank(ρ) ≤ r, ρ ⪰ 0, Tr(ρ) = 1
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Factored objective for QST

Convex constraint Non-convex constraint

ρ = UU†

Smaller space   
than original space  

(ℂd×r)
(ℂd×d)

Constraints automatically satisfied

Ut+1 = Ut − η∇F(UtU†
t ) ⋅ Ut

= Ut − η ( 1
n

n

∑
i=1

{Tr(AiUiU†
i − yi}Ai) ⋅ Ut

Factored Gradient Descent
[Kyrillidis et al., 2019]

Ut+1 = Zt − η𝒜† (𝒜(ZtZ†
t ) − y) ⋅ Zt

Zt+1 = Ut+1 + μ (Ut+1 − Ut)

Momentum-inspired Factored Gradient Descent

[J. L. Kim, et al., Photonics 2023]  
• Accelerated linear convergence  
• Extensive experimental results 

using real quantum data (IBM)

• Optimization:  where  
• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)

minimize
ρ∈ℂd×d

F(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, rank(ρ) ≤ r

minimize
U∈ℂd×r

F(UU†) := 1
2 ∥𝒜(UU†) − y∥2

2
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MiFGD performance on real quantum data (IBM QPU)

45

GHZminus (6) GHZminus (8)

Hadamard (6) Hadamard (8)

[m = 20% ⋅ d2]
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Compressive sensing + QST

[D. Gross et al., 2010]: can reconstruct rank-  density matrix  using  measurementsr ρ ∈ ℂd×d O (r ⋅ d ⋅ poly(log d))
[Y.K. Liu, 2010]:  satisfies RIP for rank-  matricesPi ∈ {I, σx, σy, σz}⊗n r

Restricted Isometry Property (RIP) for rank-  matrices 

A linear operator  satisfies the RIP on rank-  matrices, 
with parameter , if the following holds for any rank-  matrix 

, with high probability: 

r

𝒜 : ℂd×d → ℝm r
δ2r ∈ (0,1) r

X ∈ ℂd×d

(1 − δ2r) ⋅ ∥X1 − X2∥2
F ≤ ∥𝒜(X1 − X2)∥2

2 ≤ (1 + δ2r) ⋅ ∥X1 − X2∥2
F.

[B. Recht et al., 2010]

 constraint can be removed 
without affecting the final estimate

Tr(ρ) = 1
[Kalev et al., 2015]:

≈ 9.65 × 1014 with r = 100, n = 30

• Optimization:  where  
• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)

minimize
ρ∈ℂd×d

F(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to rank(ρ) ≤ r, ρ ⪰ 0, Tr(ρ) = 1
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Factored objective for QST

Convex constraint Non-convex constraint

ρ = UU†

Smaller space   
than original space  

(ℂd×r)
(ℂd×d)

Constraints automatically satisfied

Ut+1 = Ut − η∇F(UtU†
t ) ⋅ Ut

= Ut − η ( 1
n

n

∑
i=1

{Tr(AiUiU†
i − yi}Ai) ⋅ Ut

Factored Gradient Descent
[Kyrillidis et al., 2019]

still large! ≈ 9.65 × 1014 Ut+1 = Zt − η𝒜† (𝒜(ZtZ†
t ) − y) ⋅ Zt

Zt+1 = Ut+1 + μ (Ut+1 − Ut)

Momentum-inspired Factored Gradient Descent

[J. L. Kim, et al., Photonics 2023]  
• Accelerated linear convergence  
• Extensive experimental results 

using real quantum data (IBM)

• Optimization:  where  
• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)

minimize
ρ∈ℂd×d

F(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, rank(ρ) ≤ r

minimize
U∈ℂd×r

F(UU†) := 1
2 ∥𝒜(UU†) − y∥2

2



Junhyung Lyle Kim Algorithmic, Structural, and Pragmatic Acceleration Techniques in ML and QC

Distributed objective

48

• We consider the setting where the measurements  and the sensing matrices 
 from a central quantum computer are locally stored across  different classical 

machines.  

• These classical machines perform some local operations based on their local data, and 
communicate back and forth with the central quantum server. 

y ∈ ℝm

𝒜 : ℂd×d → ℝm M

min
U∈ℂd×r

G(U) := F(UU†) = 1
2 ∥𝒜(UU†) − y∥2

2Centralized

min
U∈ℂd×r {g(U) =

1
M

M

∑
i=1

gi(U)},

where gi(U):= 𝔼j∼𝒟i
∥𝒜j

i(UU†) − yj
i ∥

2
2

Distributed
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Naive distributed algorithm

49

min
U∈ℂd×r {g(U) =

1
M

M

∑
i=1

gi(U)},

where gi(U):= 𝔼j∼𝒟i
∥𝒜j

i(UU†) − yj
i ∥

2
2

M

⋃
i=1

𝒜i = 𝒜
M

∑
i=1

mi = m

𝒜i : ℂd×d → ℝmi

yi ∈ ℝmi

-th mchinei BUT: 
• Intra-node communication is 

much more expensive than—
typically about 3 orders of 
magnitude— local computation 
[G. Lan et al., 2020]
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Local Stochastic Factored Gradient Descent

50

• Initialization scheme in  in Algorithm 1 is modified 
from [S. Bhojanapalli et al., 2016] to distributed version, 
and satisfies the initialization condition in Lemma 1.

(7)

Lemma 1: Let Assumption 1 hold. Assume that 

, where  is the -th 

singular value of , and . Then:

D2(Ui
0, U⋆) ≤ σr(X⋆)

100 ⋅ κ ⋅ σ1(X⋆) σk(X⋆) k

X⋆ κ = L/μ
⟨Ui

t − U⋆R⋆, ∇gi(Ui
t)⟩ ≥

2ηt

3 ∥∇gi(Ui
t)∥2

F + 3μ
20 σr(X⋆) ⋅ D2(Ui

t , U⋆) .

Lemma 2: Let Assumptions 1 and (2c) hold. Then, the 
output of Algorithm 1 with  satisfies:max

p
| tp+1 − tp | ≤ h

1
M

M

∑
i=1

𝔼[∥Ût − Ui
t∥2

F] ≤ η2
tq(h − 1)2G2,

where  is the synchronization step immediately before .tq t
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Local linear convergence

51

Theorem 1: Let Assumptions 1, 2, and the initialization condition of Lemma 1 hold. Moreover, let 
 for  and . Then, the output of Algorithm 1 has the 

following property: 

ηt = η < 1
α t ∈ [0 : T] max

p
| tp − tp+1 | ≤ h

𝔼[D2(ÛT+1, U⋆)] ≤ (1 − ηα)T+1 D2(Û0, U⋆) + η ( 4(h − 1)2G2

α + σ2

Mα ),

where  is the optimum of  over the set of PSD matrices such that ,  is such that 

, and  is a global constant.

X⋆ f rank(X⋆) = r U⋆

X⋆ = U⋆U⋆⊤ α = 3μ
10 σr(X⋆)

• Notice the last variance term , which disappears in the noiseless case, is reduced by the number of 

machines .  

• Single-batch is assumed in the proof; by using batch size , this term can be further divided by .  

• By plugging in  (i.e., synchronization happens on every iteration), the first variance term 
disappears, exhibiting similar local linear convergence to SFGD. 

• Can achieve exact (local) convergence with decaying step size at the expense of sublinear rate

σ2

Mα
M

b > 1 b

h = 1



“Local Stochastic Factored Gradient Descent for Distributed 
Quantum State Tomography”

52

1. Algorithmic: 
    Accelerated linear convergence of MiFGD that utilize  
    (non-convex) low-rank matrix factorization + acceleration

2. Setup / Modeling:  
    Distributed QST with Stochastic FGD that allows local updates 
    with rigorous theory
3. Practical Importance:  
    Extensive experimental results using real quantum data /  
    Open source software compatible with Qiskit

“Fast Quantum State Reconstruction via Accelerated Non-convex 
Programming”

J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. L-CSS 2022

J. L. Kim, G. Kollias, A. Kalev, K. X. Wei, A. Kyrillidis. Photonics 2023 
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Road Map: Algorithmic, Structural, and Pragmatic Acceleration

53

Accelerated Factored Gradient Descent 
 
Keyword: non-convex, matrix factorization 
 
[J. L. Kim, G. Kollias, A. Kalev, K. X. Wei, A. Kyrillidis. “Fast Quantum  
State Reconstruction via Accelerated Non-Convex Programming” 
Photonics 2023 / Quantum Information Processing (QIP) 2023 (poster)]

Stochastic Proximal Point Method 
with Momentum 
 
Keyword: implicit method, acceleration, stability 
 
[J. L. Kim, P. Toulis, A. Kyrillidis. “Convergence and Stability of the  
Stochastic Proximal Point Algorithm With Momentum,” L4DC 2022]

Local Stochastic Factored Gradient Descent 
 
Keyword: distributed optimization, local updates 
 
[J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. “Local Stochastic  
Factored Gradient Descent for Distributed Quantum State Tomography” 
Control Systems Letters (L-CSS), IEEE 2022 / Quantum Information Processing (QIP) 2023 (poster)]

Adaptive Federated Learning with  
Auto-Tuned Clients 
 
Keyword: adaptive step-size, federated learning 
 
[J. L. Kim, M. T. Toghani, C. A. Uribe, A. Kyrillidis. “Adaptive 
Federated Learning with Auto-Tuned Clients”, ICLR 2024]

“Plug-nd-ply” 

Adptive step size

“Momentum”

“Distributed  
Optimiztion” 

Prgmtic

Appliction: 

Quntum Stte Tomogrphy 

Momentum Extragradient:  
A Polynomial-Based Analysis
[J. L. Kim, G. Gidel, A. Kyrillidis, F. Pedregosa.  
 “When is MEG Optimal?,” TMLR 2024]

Solving QLSP via PPM
[J. L. Kim, N. H. Chia, A. Kyrillidis. WIP]

Algorithmic Structurl Algorithmic

PrgmticStructurl PrgmticStructurl

Algorithmic Prgmtic
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Beyond Non-convex, Distributed, and Stable Optimization

54

Anlysis
Lyapunov Functions 
Spectral Analysis 
Polynomial

Model Structure
Distributed Optimization 
Minimax/Game Optimization 
Federated Learning 
Quantum Optimization

Centralized GD

Optimiztion

Algorithm

Factored Gradient Descent 
Proximal Point Method  
Extragradient  
Adaptive Methods

Acceleration 
with momentum

 Quantum Subroutines

Generative Models Quantum Linear 
System with PPM

 Local SFGD

Momentum Extragradient
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Thank you!
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Back up slides



57

SPPAM
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Proximal point algorithm

58

xt+1 = arg min
x∈ℝp {f(x)+ 1

2η ∥x − xt∥2
2}

• PPA changes the conditioning of the problem 

• Equivalent to implicit gradient descent (IGD):

xt+1 = xt − η∇f (xt+1)
• PPA enjoys remarkable convergence behavior. For convex  f :

f(xT) − f(x⋆) ≤ O ( 1
∑T

t=1 ηt )
Guller  (1991).  “On  the  Convergence  of  the Proximal  Point  Algorithm  for  Convex  Minimization”

“Arbitrarily fast convergence”

What about stochastic settings? 
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The quadratic model case

59

f(x) =
1
2

x⊤Ax − b⊤x
Conditions on  and  for different algorithms to solve:η β
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Theory continued…

60

Accelerated SGD (strongly convex quadratic):  
 

 for 0.0028 ≈ 1
361 ≤ ηλ ≤ 24

19 ≈ 1.26 λ ∈ {μ, L}

Unfair comparison Assran and Rabbat (2020). “On the Convergence of Nesterov’s Accelerated Gradient Method in Stochastic Settings”

SPPAM (strongly convex): 
 with ημ > 4.81 β = 0.9

strongly convex quadratic f( ⋅ ) β = 0.9
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Adaptive FL
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Same dataset & different model

62

α = 0.1
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Effect of different level of non-iidness

63

• We proposed a simple step size rule for SGD that enables each client to use 

Once you change the dataset / architecture / heterogeneity, you have to fine-tune your client optimizer 
again to ensure proper learning. -SGD performs well and robustly in different FL settings.Δ
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Average across three random seeds

64
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Different loss functions

65

FedProx MOON
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Our proposed step size for -SGDΔ

66

ηi
t = min { ∥xi

t − xi
t−1∥

2∥∇fi(xi
t) − ∇fi(xi

t−1)∥
, 1 + θi

t−1ηi
t−1}, θi

t−1 = ηi
t−1/ηi

t−2

• Each client uses its own step size 
• Step size only requires known quantities (i.e., no tuning required)  

• Individual step size is adaptive to the local smoothness of  fi

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x) ← 𝔼z∼𝒟i
[Fi(x, z)]

xi
t+1 = xi

t − ηi
t ∇fi(xi

t)Client  local updates: i

Where does this come from?
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What is a good step size for gradient descent?

67

f(xt+1) − f(x⋆) ≤
L∥x0 − x⋆∥2

2(2t + 1)

f(x) ≥ f(y) + ⟨∇f(y), x − y⟩ +
μ
2

∥x − y∥2 ∀x, y

∥xt+1 − x⋆∥2 ≤ (L − μ
L + μ )t∥x0 − x⋆∥2

ηt =
2

L + μη =
1
L

“Optimal”

Hard to estimate  in practiceL

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L
2 ∥y − x∥2 ∀x, y-smooth functions: L

xt+1 = xt − η∇f (xt)Gradient descent:

= f(xt) − η(1− η ⋅ L
2 )∥∇f(xt)∥2

⏟

f(xt+1) ≤ f(xt) + ⟨∇f(xt), xt+1 − xt⟩+ L
2 ∥xt+1 − xt∥2
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Even trickier in distributed/FL scenario

68

min
x∈ℝd

f(x) =
1
m

m

∑
i=1

fi(x) ← 𝔼z∼𝒟i
[Fi(x, z)]

Assuming  is  smooth (hard to estimate in practice), 

step size of the form    is often used for all , where 

fi( ⋅ ) Li
1

Lmax
i Lmax := max

i
Li

E.g.,  where  is -smooth and  is -smoothmin
x∈ℝd

1
2 (f1(x) + f2(x)) f1 1 f2 10000

Suboptimal!   can be different for each fi i
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Local smoothness?

69

ηt = min { ∥xt − xt−1∥
2∥∇f(xt) − ∇f(xt−1)∥

, 1 + θt−1ηt−1}, θt−1 = ηt−1/ηt−2

∥∇f(xt) − ∇f(xt−1)∥ ≤ Lt ⋅ ∥xt − xt−1∥, ∀t = 1,2,…

∥∇f(x) − ∇f(y)∥ ≤ max
z∈𝒞

∥∇2f(z)∥ ⋅ ∥x − y∥, ∀x, y ∈ 𝒞

∥xt+1 − x⋆∥2 +
1
2

∥xt+1 − xt∥2 + 2ηt(1 + θt)( f(xt) − f(x⋆))

≤ ∥xt − x⋆∥2 +
1
2

∥xt − xt−1∥2 + 2ηtθt( f(xt−1) − f(x⋆))

[Malisky & Mishchenko (2020), “Adaptive Gradient Descent without Descent”]

∥∇f(x) − ∇f(y)∥ ≤ L ⋅ ∥x − y∥ ∀x, y

2ηt+1θt+1 ≤ 2ηt(1 + θt)

⟹
1
L

≤
∥x − y∥

∥∇f(x) − ∇f(y)∥
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“Almost” no tuning

70

ηi
t,k = min { γ∥xi

t,k − xi
t,k−1∥

2∥∇̃fi(xi
t,k) − ∇̃fi(xi

t,k−1)∥
, 1 + δθi

t,k−1ηi
t,k−1}
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Additional experiments with FedAdam

71

FedAdam

FedAvg
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Changing the domain: text classification

72
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Same dataset & different model

73

α = 0.1
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Same model & different dataset

74

α = 0.01
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Effect of different level of non-iidness

75

• We proposed a simple step size rule for SGD that enables each client to use 

Once you change the dataset / architecture / heterogeneity, you have to fine-tune your client optimizer 
again to ensure proper learning. -SGD performs well and robustly in different FL settings.Δ
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Well-known adaptive step sizes have limitations

76

Polyak step size: ηt =
f(xt) − f(x⋆)
∥∇f(xt)∥2

Line search: ηt = arg min
η

f(xt − η∇f(xt))

xt+1 = xt − ηt ∇f (xt)

(Norm) Adagrad: ηt =
∥x0 − x⋆∥

∑t
i=0 ∥∇f(xt)∥2

Additional computation

Knowledge of  f(x⋆)

Knowledge of ∥x0 − x⋆∥
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Little effect on different number of local epochs

77

CIFAR-100 + ResNet-50 
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Different number of local data per client

78



79

QST
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• Any single qubit state can be written as                      
 

       

 
where  for   

• How do we “measure”  ? 

‣ Prepare  number of copies of the state    

‣ Measure the projection of  onto eigenvectors of  resulting in  

‣ Approximation of  is given by  

ρ =
1
2 (I + rxσx + ryσy + rzσz)
rα = Tr(ρσα), α = x, y, z

rα = Tr(ρσα)

M ρ

ρ σα α1, α2, …, αM

Tr(ρσα)
1
M

M

∑
i=1

αi

E.g. M = 1000
Measurement using , suppose we find  

the qubit in state   400 times,  

and in state   600 times.

σz

|0z⟩
|1z⟩

We can estimate  

  and Tr (ρ |0z⟩⟨0z |) ≈ 400
1000 := yz

0

Tr (ρ |1z⟩⟨1z |) ≈ 600
1000 := yz

1

80

Quantum State Tomography, Single Qubit Case

 

σx = [0 1
1 0], σy = [0 −i

i 0 ], σz = [1 0
0 −1] .

“Pauli 
matrices”

Expectation value of  w.r.t σα ρ
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• Once we have    for  and , we can solve: 

• More generally we can solve:  

• How does it scale? 

‣ Optimization: the space of  grows exponentially (recall: ) 

‣ Amount of data: from , if we have access to  and  that form an orthonormal basis for 

 (i.e. ), we can reconstruct  with linear inversion 

yα
i i = {0,1} α = {x, y, z}

ρ ∈ ℂd×d d = 2n

𝒜(ρ) = y y1, …, ym A1, …, Am
ℂd×d m = d2 ρ

    “rank-1 sensing matrix (outer 
product)”

Aα
i = | iα⟩⟨iα |
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Quantum State Tomography, Single Qubit Case

minimize
ρ∈ℂd×d

f(ρ) := ∑
α=x,y,z

∑
i=0,1

(Tr(ρAα
i ) − yα

i )2

subject to ρ ⪰ 0, Tr(ρ) = 1

minimize
ρ∈ℂd×d

f(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, Tr(ρ) = 1

  where  (𝒜(ρ))i
= Tr(ρAi) Ai ∈ ℂd×d, i = 1,…, m

measured data y ∈ ℝm

And we need 
  

measurements
m = O (232) ≈ 4,294,967,296

For  qubits,  
where  

n = 16 ρ ∈ ℂd×d

d = 65,536
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Convergence theory
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• Optimization:  where  
• Amount of data:  without any 

ρ ∈ ℂd×d d = 2n

O(d2)

   VS.(1− 1 − δ2r

1 + δ2r )
J+1

  VS.   (1 − 0.25)6 ≈ 0.1779 (1 − 0.25)
6

≈ 0.0156
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MiFGD performance on real quantum data (IBM QPU)
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GHZminus (6) GHZminus (8)

Hadamard (6) Hadamard (8)

[m = 20% ⋅ d2]
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Comparison with SOTA: Qucumber NN methods

84

[m = 50% ⋅ d2]

[Torlai et al., 2018]
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Numerical Simulations
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• Increasing number of local iterations lead to faster 
convergence in terms of the synchronization steps. 

• Speed up gets marginal: there is not much difference 
between  and , indicating there is an 
“optimal” number of local iterations. 

• Higher  leads to slightly worse final accuracy—consistent 
with Theorem 1

h = 100 h = 200

h

• Number of synchronization steps to reach  while 
fixing . Each machine gets  measurements. 

• Significant speed up from  to .

ε ≤ 0.05
h = 20 200

M = 5 M = 15
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Function class and assumptions
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Assumption 2: The stochastic gradient  is unbiased, has a bounded variance, and is bounded in 

expectation, for all . That is, 

∇gj
i

i ∈ [M]
𝔼j[∇gj

i (U)] = ∇gi(U),

𝔼j[∥∇gj
i (U) − ∇gi(U)∥2

F] ≤ σ2, and

𝔼j[∥∇gj
i (U)∥2

F] ≤ G2,

where  follows a uniform distribution.j

(2a)

(2b)

(2c)

Assumption 1: The function  is -restricted strongly convex and -restricted smooth. That is, for all 

 and for all , it holds that: 

fi μ L
X, Y ⪰ 0 i ∈ [M]

fi(Y ) ≥ fi(X) + ⟨∇fi(X), Y − X⟩+ μ
2 ∥X − Y∥2

F and

∥∇fi(X) − ∇fi(Y )∥F ≤ L∥X − Y∥F

(1a)
(1b)
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Exact local sub-linear convergence 
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Theorem 2: Let Assumptions 1, 2, and the initialization condition of Lemma 1 hold. Moreover, let 
 for  and . Then, the output of Algorithm 1 has the 

following property: 

ηt = 2
α(t + 2) t ∈ [0 : T] max

p
| tp − tp+1 | ≤ h

𝔼[D2(ÛT+1, U⋆)] ≤
4C

α(T + 3)
,

where  is the optimum of  over the set of PSD matrices such that ,  is such that 

, and  and  are global constants.

X⋆ f rank(X⋆) = r U⋆

X⋆ = U⋆U⋆⊤ α = 3μ
10 σr(X⋆) C = (h − 1)2(h + 2)2G2+ σ2

M

• We can show the exact local convergence by using appropriately diminishing step sizes  

• But the convergence rate reduces to a sub-linear rate.


