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[ Motivation of low-rank prior ]

[QST objective]

[ Experiments ]

min
ρ∈ℂd×d

F(ρ) := 1
2m ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, rank(ρ) ≤ r

[ Algorithm ]

• A quantum state can be represented 
by a density matrix  which is a 
complex, positive semi-definite (PSD) 
matrix with unit trace  

• Estimating , given the measurement 
data, is the goal of QST 

• The density matrix of an -qubit mixed 
state can be written as a mixture of  
pure states:

ρ

ρ

n
r

ρ =
r

∑
k

pkΨkΨ†
k ∈ ℂ2n×2n

where  is the probability of finding 
 in the pure state . 

• Given theses definitions, QST can be 
formulated as the estimation of a 
low-rank density matrix  on 
an -qubit Hilbert space with 
dimension :

pk
ρ Ψk

ρ⋆ ∈ ℂd×d

n
d = 2n

•  is the linear sensing 
map such that  for 

 (the Born rule)

𝒜 : ℂ2n×2n → ℝm

𝒜(ρ)k = Tr(Akρ)
k = 1,…, m

[Modified QST objective]

min
U∈ℂd×r

G(U) := F(UU†) = 1
2m ∥𝒜(UU†) − y∥2

2.

• By rewriting , both the PSD 
and the low-rank constraints are 
automatically satisfied, leading to the 
following unconstrained non-convex 
formulation:

ρ = UU†

• Even with the reduced sample 
complexity , 
its linear dependency on  is still 
prohibitively expensive 

• E.g., for  and rank , the 
reduced sample complexity still 
reaches 

m = O(r ⋅ d ⋅ poly log(d))
d = 2n

n = 20 r = 100

2.02 × 1010

• Classically (without low-rank prior), 
the sample complexity  for 
reconstructing  is  

• [Gross et al., 2010] proved that a rank-
 density matrix can be reconstructed 

with  
measurements instead 

• However, low-rankness is a non-
convex constraint, which is tricky to 
handle

m
ρ⋆ ∈ ℂd×d O(d2)

r
m = O(r ⋅ d ⋅ poly log(d))

[Distributed QST objective]
• To handle the explosion of data, we 

consider the setting where the 
measurements  and the sensing 
matrices  from a central 
quantum computer are locally stored 
across  different classical machines.  

• These classical machines perform some 
local operations based on their local data, 
and communicate back and forth with the 
central quantum server.  

• The distributed QST problem is: 
 
 
 

• with  being a random variable that 
follows a distribution  for machine .

y ∈ ℝm

𝒜 : ℂd×d → ℝm
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j
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min
U∈ℂd×r {g(U) =

1
M

M

∑
i=1

gi(U)},

where gi(U):= 𝔼j∼𝒟i
∥𝒜j

i(UU†) − yj
i ∥

2
2,

• The last variance term , which 
disappears in the noiseless case, is 
reduced by the number of machines  

• Above result assumes a single-batch is 
used; by using batch size , this 
term can be further divided by  

• By plugging in  (i.e., 
synchronization happens on every 
iteration), the first variance term 
disappears, exhibiting similar local 
linear convergence to SFGD. 
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[Assumptions]

[Constant step size]

[Diminishing step sizes]

• We can prove the exact convergence at 
the cost of slowing down the 
convergence rate to sub-linear rate by 
using appropriately diminishing step 
sizes


