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[Distributed QST objective]

[QST objective]

* A guantum state can be represented
by a density matrix p which is a
complex, positive semi-definite (PSD)
matrix with unit trace

To handle the explosion of data, we
consider the setting where the

measurements y € R™ and the sensing
matrices & : C**¢ - R™ from a central

[Constant step size]

Theorem 2 (Local linear convergence with constant step
size). Let Assumptions I, 2, and the initialization condition
of Lemma 1 hold. Moreover, let n; = n < é forte [0:T]
and max, |t, — tp+1| < h. Then, the output of Algorithm I
has the following property:

E[D?(Uri1,U%)] < (1 —na)" " D*(Uo, U*)
+7 ((h_22G2 * A‘}Z)

where X is the optimum of | over the set of PSD matrices
such that rank(X*) = r, U* is such that X* = U*U*"', and
o= %O'T(X *) is a global constant.

e Estimating p, given the measurement
data, is the goal of QST

« The density matrix of an n-qubit mixed

quantum computer are locally stored (12)

across M different classical machines.
These classical machines perform some
local operations based on their local data,
and communicate back and forth with the

central quantum server.
* The distributed QST problem is:

M
i {0 =57 T a0} '

where g(U):= [EjN@l.HeQW,:(UUT) — Y{”%a

state can be written as a mixture of r
pure states:

p= ) pPY e

k
where p, is the probability of finding

e The last variance term ¢°/(Ma), which
disappears in the noiseless case, is
reduced by the number of machines M

p in the pure state P,. Above result assumes a single-batch is

 Given theses definitions, QST can be
formulated as the estimation of a

used; by using batch size b > 1, this
term can be further divided by b

By plugginginh =1 (i.e.,

low-rank density matrix p* € C**?on  « with j being a random variable that

synchronization happens on every

an n-qubit Hilbert space with follows a distribution &, for machine i.

. . A iteration), the first variance term
dimension d = 2": . o o
disappears, exhibiting similar local

. 1 ) Algorithm ,
min Flp) .= -l (p) = ylli5 | | linear convergence to SFGD.
peC
: Algorithm 1 Local SFGD
> < minichi '
SUbJeCt to P = 0, I’aﬂk(p) =7 1: Set number of iterations 1" > 0, synchronization time [DlmlﬂIShlﬂg Step SIZGS]
A teps t1,ts,..., and initialize U? = Uy as below: , e
e of (]:2 X2% _ RM™; s the linear sen sing RSt b2 . mj\l/,la =0 05 DEOW Theorem 4 (Local sub-linear convergence with diminishing

step size). Let Assumptions 1, 2, and the initialization

condition of Lemma 1 hold. Moreover, let n; = o t2+2) for

t € [0:T] and max, |t, — t,+1| < h. Then, the output of

Ul = SVD( — Z T—nini(O)) Vie [M], (7)
1=1

where SVD denotes the singular value decomposition.

map such that (p), = Tr(A,p) for
k=1,...,m(the Born rule)

2: for each round ¢ =0,...T do Algorithm 1 has the following property:
3:  for in parallel for ¢ € [M] do - i
[ Motivation of low-rank priOr ] 4: Sample j; uniformly at random from [m;]. E|D*({Urs+1,U%)] < S (T3) (21)
5: if ¢ = ¢, for some p € N then here X* is the onti h that rank(X*) [+ :
, , , . i _ 1M (71 Ay where is the optimum such that ran =, is
 Classically (without low-rank prior), j: e 1T ar 2im1 (Ui = mVgl (UY)) such that X* = U*U*T, and o = %0,(X*) and C =
the sample complexity m for 8: i =Ui - Vgl (U} 4(h — 1)*G? + §; are global constants.
: * dxd ) 9: end if
I NSTr N |
econstructing p™ &€ L™ is O(d”) 10: de;}d for * We can prove the exact convergence at
11: end for

o [Gross etal., 2010] proved that a rank-
r density matrix can be reconstructed
with m = O(r - d - polylog(d))
measurements instead

 However, low-rankness is a non-

the cost of slowing down the
convergence rate to sub-linear rate by
using appropriately diminishing step
sizes

| M '
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[Assumptions]

Assumption 1. The function f; is u-restricted strongly
convex and L-restricted smooth. That is, VX,Y > 0 and

convex constraint, which is tricky to
Vi € [M], it holds that

[ Experiments |

handle ,
f"’(Y) 2 fz(X) T <sz(X), Y_X> T ILZ_L”X - Y”F’ (I-a) GHZ state reconstruction: n =6, M = 10
Modified QST objective] and |V fi(X) = V/i¥)llp S L|X = Yp. (-H) o
Assumption 2. The stochastic gradient ng is unbiased, has f
o By rewriting p = [/ UT, both the PSD a bounded variance, and is bounded in expectation, Vi € bl
. [M] That iS, <}S° 10-1
and the low-rank constraints are | S
. . o . Va’ — : -
automatically satisfied, leading to the i lV9; S,U)] Vai(l), , , (l-a) | | , , | |
: : E;|||Vg: (U)—Vg;(U <o, d II-b 0 20 40 60 80 100
following unconstrained non-convex g g;( ) ) 9il 2)”F] 7o -0) Number of synchronization steps t,
formulation° ]Ej i Vgi (U ) ” F] < G ) (H-C) Scalability: # synchronization steps to reach € = 0.05
| where j follows a uniform distribution. é
min G(U) := F(UU") = —||(UU") — y|l5. "
UecCaxr 2m Definition 1 (Eq. (3.1) in [10]). For any U,V € R [et =
D(U,V) :=mingeo |U — VR||r, where © C R™ " is the g w0
e Even with the reduced sample set of orthonormal matrices such that R' R = 1, «,. S
) 30 1 —®
CompleXIty m=0(r-d- POIY log(d)), Lemma 1 (Lemma 14 in [26]). Let Assumption 1 hold. 5 10 15 20

Number of workers M

Assume that D?*(U},U*) < moizgaf*),

the k-th singular value of X*% and k = % Then, the
following inequality holds:
(U} — U*R*,Vg;(U}))
> 2| Vg (Up) |7 + S50r(X*) - D*(U;, U).

its linear dependency on d = 2" is still where ok (X") is

Fig. 1. Top: Convergence speed as a function of number of synchronization
steps t,, for various number of local iterations. Bottom: number of synchro-
nization steps to reach € < 0.05 as a function of number of workers M.
The batch size b = 50 is used for all cases.

prohibitively expensive
« E.g., forn =20 andrankr =100, the
reduced sample complexity still

reaches 2.02 x 10!V

(11)



