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[QST objective]

* A guantum state can be represented
by a density matrix p which is a
complex, positive semi-definite (PSD)
matrix with unit trace

« Goal of QST: estimate p, given the
measurement data

« The density matrix of an n-qubit mixed

state can be written as a mixture of r
pure states:

p=) pPY e
k

where p, is the probability of finding

p in the pure state YV,
« QST objective: estimation of a low-
rank density matrix p* € C%“ on an

n-qubit Hilbert space (d = 2"):
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subject to p >0, rank(p) <r

o o :C**?" - R™is the linear sensing
map such that o/ (p), = Tr(A, p) for
k=1,...,m(the Born rule)

Theorem: Assume that & satisfies the RIP with constant §,. < 1/10. Initialize U, = U_, such that min||U, — U*R|| <
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[Structured density matrices]

GHZ state Hadamard state

[ Motivation of low-rank prior |

Classically (without low-rank prior), the
sample complexity m for reconstructing
p* € C™is O(d?)

[Gross et al., 2010] proved that a rank-r
density matrix can be reconstructed with
m = O(r - d - polylog(d)) measurements
instead

Many density matrices have low-rank
structure

Caveat: low-rankness is a non-convex
constraint, which is tricky to handle
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[Modified QST objective]

* By rewriting p = UU", both the PSD
and the low-rank constraints are
automatically satisfied, leading to the
following unconstrained non-convex
formulation:

LU - y|I%
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min G(U) := F(UU") =
Ueq:d)(r

 Expensive projection operators are no
longer needed

[ Algorithms |

Factored Gradient Descent
[Kyrillidis et al., 2019]

Ui = U —nVAUU) - U,

= U= nel' (WU -¥) - U

Momentum-inspired FGD
U,y = Z,— nod! <Q7(ZkZ]j) _ y> .7,

iy = Uy T 1 (Uk+1 — Uk)
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is the (inverse) condition number of &, 7(p) := 6,(p)/c,(p) is the condition number of p with rank(p) = r, and 6.(p) is the

1
: and the momentum parameter

, for user-defined e e b1l Then, for the (noiseless) measurement data y = &/(p™) with rank(p™) = r, the output of the

MiFGD satisfies the following: for any € > 0, there exist constants C. and C, such that, for all k,
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[Comparison with Qiskit and Cucumber (DNN)]
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» Extensive additional experiments provided in the paper
 Hadamard state, random state, and higher number of qubits
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IMIFGD performance (real guantum data)]
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e Comparison of simulated data VS. real quantum data
* Open source compatible with Qiskit: github.com/gidiko/MiFGD



