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Fast quantum state tomography via 
accelerated non-convex programming

Joint work with A. Kalev (USC), G. Kollias & K. Wei (IBM), and A. Kyrillidis (Rice) 



Quantum state tomography (QST)
• Electrical engineers use multimeters and oscilloscopes to verify that circuit works as expected. 


• We need similar verification tools in quantum computing. QST is one such tool.


• QST is the task to reconstruct the density matrix of a given quantum state from measurement data.
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I have a quantum 

state  in mindρ

• Expectation value of  
 in this basis is 0.64… 

 

• More data… 

ρρ ̂ρ≈?



• We represent quantum bits (qubits)  and  as vectors:  
 

                        


• A state  can be written as a superposition of  and ,    
e.g., 


• 2-qubit state : 
 

            


• A pure state of  qubits can be represented by column vectors in 
 space with 

|0⟩ |1⟩

|0⟩ = [1
0], |1⟩ = [0

1]
|ψ⟩ |0⟩ |1⟩

|ψ⟩ = α |0⟩ + β |1⟩

|ψ⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩

|ψ⟩ = α

1
0
0
0

+ β

0
1
0
0

+ γ

0
0
1
0

+ δ

0
0
0
1

n
ℂd d = 2n

Figure source: https://qiskit.org/textbook/ch-states/introduction.html 

Quantum stateQuantum state
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Outcome  w.p. |1⟩ |β |2



•  is a column vector, called “ket”


• is a row vector, called “bra”, with complex conjugates


• Inner product:  is a number


• Outer product: is a matrix


‣ A pure state  can be written as 


‣ A mixed state can be written as 

|ψ⟩

⟨ψ |

⟨ϕ |ψ⟩

|ϕ⟩⟨ψ |

|ψ⟩ ρ = |ψ⟩⟨ψ |

ρ = ∑
i

pi |ψi⟩⟨ψi |

Quantum state and density matrix
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E.g.   |ψ⟩ =

1

2
i

2

→ ⟨ψ | = [ 1

2

−i

2 ]

“density matrix”

Density matrix  


• PSD: 

• Unit trace: 


ρ

ρ ⪰ 0
Tr(ρ) = 1



• Any single qubit state can be written as                      
 

       
 
where  for  


• How do we “measure”  ?


‣ Prepare  number of copies of the state   


‣ Measure the projection of  onto eigenvectors of  resulting in 



‣ Approximation of  is given by  

ρ =
1
2 (I + rxσx + ryσy + rzσz)
rα = Tr(ρσα), α = x, y, z

rα = Tr(ρσα)

M ρ

ρ σα
α1, α2, …, αM

Tr(ρσα)
1
M

M

∑
i=1

αi

E.g. M = 1000
Measurement using , suppose we find 

the qubit in state   400 times, 

and in state   600 times.

σz
|0z⟩

|1z⟩
We can estimate 


  and
Tr (ρ |0z⟩⟨0z |) ≈ 400
1000 := yz

0

Tr (ρ |1z⟩⟨1z |) ≈ 600
1000 := yz

1

Quantum state tomography (single qubit case)
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 σx = [0 1
1 0], σy = [0 −i

i 0 ], σz = [1 0
0 −1] .

“Pauli matrices”

Expectation value of  w.r.t σα ρ



• Once we have    for  and , we can solve:


• More generally we can solve: 


• How does it scale?


‣ Optimization: the space of  grows exponentially (recall: )


‣ Amount of data: from , if we have access to  and  that form 
an orthonormal basis for  (i.e. ), we can reconstruct  with linear inversion 

yα
i i = {0,1} α = {x, y, z}

ρ ∈ ℂd×d d = 2n

𝒜(ρ) = y y1, …, ym A1, …, Am
ℂd×d m = d2 ρ

    “rank-1 sensing matrix”Aα
i = | iα⟩⟨iα |

Quantum state tomography (single qubit case)
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minimize
ρ∈ℂd×d

f(ρ) := ∑
α=x,y,z

∑
i=0,1

(Tr(ρAα
i ) − yα

i )2

subject to ρ ⪰ 0, Tr(ρ) = 1

minimize
ρ∈ℂd×d

f(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, Tr(ρ) = 1

  where  (𝒜(ρ))i
= Tr(ρAi) Ai ∈ ℂd×d, i = 1,…, m

measured data y ∈ ℝm

And we need 
  

measurements
m = O (232) ≈ 4,294,967,296

For  qubits,  
where  

n = 16 ρ ∈ ℂd×d

d = 65,536



Structured density matrices
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GHZ GHZminus Hadamard Random

• Optimization:  where 

• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)



minimize
ρ∈ℂd×d

f(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to rank(ρ) ≤ r, ρ ⪰ 0, Tr(ρ) = 1

Compressed sensing + QST
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(1 − δ2r) ⋅ ∥X1 − X2∥2
F ≤ ∥𝒜(X1 − X2)∥2

2 ≤ (1 + δ2r) ⋅ ∥X1 − X2∥2
F.

[D. Gross et al., 2010]: can reconstruct rank-  density matrix  using  measurementsr ρ ∈ ℂd×d O (r ⋅ d ⋅ poly(log d))
[Y.K. Liu, 2010]:  satisfies RIP for rank-  matricesPi ∈ {I, σx, σy, σz}⊗n r

Restricted Isometry Property (RIP) for rank-  matrices


A linear operator  satisfies the RIP on rank-  matrices, with 
parameter , if the following holds for any rank-  matrix 

, with high probability:


r

𝒜 : ℂd×d → ℝm r
δ2r ∈ (0,1) r

X ∈ ℂd×d

(1 − δ2r) ⋅ ∥X1 − X2∥2
F ≤ ∥𝒜(X1 − X2)∥2

2 ≤ (1 + δ2r) ⋅ ∥X1 − X2∥2
F.

[B. Recht et al., 2010]

 constraint can be ignored

without affecting the final estimate
Tr(ρ) = 1
[Kalev et al., 2015]:

• Optimization:  where 

• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)



Factorized objective and MiFGD
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minimize
ρ∈ℂd×d

f(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, rank(ρ) ≤ r

minimize
U∈ℂd×r

f(UU†) := 1
2 ∥𝒜(UU†) − y∥2

2

Convex constraint Non-convex constraint

ρ = UU†

Smaller space   
than original space  

(ℂd×r)
(ℂd×d)

Constraints automatically satisfied

Ui+1 = Ui − η∇f(UiU†
i ) ⋅ Ui

= Ui − η𝒜† (𝒜(UiU†
i ) − y) ⋅ Ui

Factored Gradient Descent
[Kyrillidis et al., 2019]

Ui+1 = Zi − η𝒜† (𝒜(ZiZ†
i ) − y) ⋅ Zi

Zi+1 = Ui+1 + μ (Ui+1 − Ui)

Momentum-inspired Factored Gradient Descent

• Optimization:  where 

• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)



Convergence theory
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• Optimization:  where 

• Amount of data:  without any prior

ρ ∈ ℂd×d d = 2n

O(d2)

   VS.(1− 1 − δ2r

1 + δ2r )
J+1

  VS.   (1 − 0.25)6 ≈ 0.1779 (1 − 0.25)
6

≈ 0.0156



Effect of quantum hardware noise
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Simulated data 
(IBM simulator)

Real data 
(IBM QPU)

[m = 20% ⋅ d2]

GHZminus (6) GHZminus (8)

Hadamard (6) Hadamard (8)

GHZminus (6) GHZminus (8)

Hadamard (6) Hadamard (8)



minimize
ρ∈ℂd×d

f(ρ) := 1
2 ∥𝒜(ρ) − y∥2

2

subject to ρ ⪰ 0, Tr(ρ) = 1

Comparison with Qiskit 
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 Fidelity( ̂ρ , ρ) := Tr( ̂ρρ)



Comparison with SOTA: Qucumber NN methods
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[m = 50% ⋅ d2]

[Torlai et al., 2018]
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Comparison with SOTA: Qucumber NN methods



Summary
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SoftwareTheory Real quantum data

• Non-convex

• Low-rank factorization

• Acceleration

https://github.com/gidiko/MiFGD


