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Quantum state tomography (QST)

* Electrical engineers use multimeters and oscilloscopes to verity that circuit works as expected.
* We need similar verification tools in quantum computing. QST is one such tool.

e QST is the task to reconstruct the density matrix of a given quantum state from measurement data.

e Expectation value of
p in this basis is 0.64...

| have a quantum
state p in mind e More data...




Quantum state

e We represent quantum bits (qubits)|0) and| 1) as vectors:
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e A pure state of n qubits can be represented by column vectors in

CY space with d = 2"

Figure source: https://qiskit.org/textbook/ch-states/introduction.html



Quantum state and density matrix

e |y)isa column vector, called “ket”

1
e (y|is arow vector, called “bra”, with complex conjugates E.g. |y) = \/f - (y| = é
E _
e Inner product: (¢ |y) is a number )
e Quter product: | ¢)(y|is a matrix
* A pure state | y) can be written as p = |y) (/| Density matrix p

e PSD: p >0
e Unit trace: Tr(p) = 1

> A mixed state can be written as p = Zpi YAKA

l
T - "density matrix”
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Quantum state tomography (single qubit case)

0), Z

* Any single qubit state can be written as  «p_ |1 1atrices”
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pP = 5 <I+ o, + 1,0, + rzaz> o, = O B 0
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where r, = Tr(po,), for a = x,y,z v

O O

» Expectation value of 6, w.r.t p
e How do we “measure” r, = Tr(pc,) ?

* Prepare M number of copies of the state p E.g. M = 1000
Measurement using o,, suppose we find
> Measure the projection of p onto eigenvectors of ¢, resulting in  the qubit in state | 0.) 400 times,
A1, Qyy ooey Ay and in state|1,) 600 times.

We can estimate

) 400

~ — 2
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> Approximation of Tr(po,) is given by — » a; Tr(p[0.)(0,
sle (po,) is g y MZ (
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Quantum state tomography (single qubit case)

e Once we have y” fori={0,1} and a = {x,y,z}, we can solve:

minirglxidze f(p) = 2 Z (Tr(pAl.“) —yl.a)z
pet a=x,y,z 1=0,1 T

subject to p>0,Tr(p)=1

> A% =i )(i,| "rank-1sensing matrix”

e More generally we can solve: l > (&27(,0))1, = Tr(pA,) where A; € C™ j=1,....m

minimize  f(p) := 3l (p) = yl5
pe(]:dxd T

subject to p>0,Tr(p)=1

» measured datay € R"”

e How does it scale?

For n = 16 qubits, p € C%4
> Optimization: the space of p € C™? grows exponentially (recall: d = 2" where d = 25 536 g

And we need
m = 0 (2*) ~ 4,294,967,296
measurements

> Amount of data: from </(p) =y, it we have accessto y;,...,y,, and A, ..., A, that form
an orthonormal basis for C% (i.e. m = d?), we can reconstruct p with linear inversion



dxd
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O(d?) without any pri

e Amount of data

Structured density matrices
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e Optimizationpe O whered =21

e Amount of data: O(d?) without any prior

Compressed sensing + QST

[Kalev et al., 2015]:

Tr(p) = 1 constraint can be ignored
without affecting the final estimate

minimize  f(p) := ll(p) - ylI3

Restricted Isometry Property (RIP) for rank-r matrices
[B. Recht et al., 2010]

A linear operator of : C™4 — R™ satisfies the RIP on rank-r matrices, with
>

parameter 6, € (0,1), it the following holds for any rank-r matrix
X € C%™4, with high probability:

(1=8,) - 11X, = XlI? < 1/(X, = XII3 < (1+8,,) - 1X; — X |13

[D. Gross et al., 2010]: can reconstruct rank-r density matrix p € C%? using O (r - d - poly(log d)) measurements
[Y.K. Liu, 2010]: P, € {[,0,,0

> Yxo My

GZ}‘X’” satisfies RIP for rank-r matrices
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e Optimization: p € C*? where d = 2"

o Arount-of datar-OdD) without-anyprior
Factorized objective and MiFGD
minimize  f(p) = 3ll(p) - ¥1l3
pEC xd
Convex constraint <—T T—» Non-convex constraint
minimize  AUU") := 2| (UUT) — y||2
UeC>" 2
Smaller space (C**") o1 L» Constraints automatically satisfied

than original space (C%%)

Factored Gradient Descent
[Kyrillidis et al., 2019]

Uiy = U; = ﬂvf(UiU;) U,

l

Momentum-inspired Factored Gradient Descent

U, =7 o (ﬂ(zizif) _ y) Z

l

= U;—nd’ (%(UiUf) — y) - U,



e Optimization: p € C®? where d = 2"

Convergence theory

P ﬂ . o1(p)
= 1o T(P) = 55 for

2'10f

and the momentum paramete ,T()‘for user- deﬁned £ € (O 1] Fory = .A(p*) where rank(p*) =T,

J+1 1/2
mig |Uji1 —U'R||r < (1 - \/%) (mln Uy — U*R||F + min |[U_y — U* R||F)

ReO ReO

o o AL ST
: <il 1 — ./1=0%2¢r - B a’
(1-52) " vso g|(1- /i) (ggglon U Rl + win U - U'RIE) -+ 0G0,

where £ = \/ ] — fnoxle *1)0(1_52") . That is, the algorithm has an accelerated linear convergence rate in iterate distances

up to a constant proportional to the momentum parameter L.
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Effect of quantum hardware noise

Simulated data
(IBM simulator)
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Comparison with Q1skit
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Comparison with SOTA: Qucumber NN methods
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[Torlai et al., 2018]
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Comparison with SOTA: Qucumber NN methods

Circuit Method
MiFGD PRWF CWF DM

HZ(7) Fidelity 0.960174  0.058387 _ 0.080648  N/A
Time (secs) 6.174129 3633.082 > 3h > 3h
Fidelity 0.960156  0.818174  0.996586  N/A
Hadamard(7) e (secs)  6.324460  713.9404 > 3h > 3h
Randon(7) Fidelity 0.967640  0.141745 _ 0.06568  N/A
Time (secs) 6.802577 746.2630 > 3h > 3h
HZ(3) Fidelity 0.940601 _ 0.0400391 N/A N/A
Time (secs) 21.16011 > 3h > 3h > 3h
Fidelity 0.940638  0.794892 N/A N/A
Hadamard(8) 1o (secs) 22.30246  2344.796 > 3h > 3h
Fidelity 0.939418 _ 0.050521 N/A N/A
Random(8)  piie (secs)  22.81059  2106.250 > 3h > 3h
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Abstract
We propose a new quantum state reconstruction method that combines ideas from compressed sensing, projector_store_path params_dict.get (‘projecto r_store_path’, |
non-convex optimization, and acceleration methods. The algorithm, called Momentum-Inspired Factored n:m_lteratmns pa rams_g}c: { ) ‘:‘:mT]lm rations']
Gradient Descent (MiFGD), extends the applicability of quantum tomography for larger systems. Despite =28 P
being a non-convex method, Mi FGD converges provably to the true densily_' matri)g ata _lincar rate, in the beta params_dict.get('beta’, |
absence of experimental and statistical noise, and under common assumptions. With this manuscript, we trace params_dict
present the method, prove its convergence property and provide Frobenius norm bound guarantees with target_state params_dict get_!
respect to the true density matrix. From a practical point of view, we benchmark the algorithm performance convergence_check_period - params_dict 'conv _check_period', 10
with respect to other existing methods, in both synthetic and real experiments performed on an IBM's relative_error_tolerance - params_dict (‘relative_error_tolerance', @.

quantum processing unit. We find that the proposed algorithm performs orders of magnitude faster than
state of the art approaches, with the same or better accuracy. In both synthetic and real experiments, we
observed accurate and robust reconstruction, despite experimental and statistical noise in the tomographic
data. Finally, we provide a ready-to-use code for state tomography of multi-qubit systems.

parity_flavor params_dict.get('parity_flavor', 'effective')

pauli_correlation_measurements_fpath - params_dict.get('pauli_correlation_measurements_fpath',

)

measurement_store_path params_dict ('measurement_store_path', |
Introduction tomography_labels params_dict ('tomography_labels', None)
density_matrix params_dict ('density_matrix', N )
Quantum tomography is one of the main procedures to identify the nature of imperfections and deviations label_format params_dict.get('label_format', 'big_endian')
in quantum processing unit (QPU) implementation [7, 25]. Generally, quantum tomography is composed ; ;
of two main parts: i) measuring the quantum system, and 1) analyzing the measurement data to obtain an :tg re_load_batch_size e "a"‘s—g}c: g E \ ;Eg“} 1—°?q—b;’tc"'—512° » 1000)
estimation of the density matrix (in the case of state tomography [7]), or of the quantum process (in the case coug el s =il s
of process tomography [63]). In this manuscript, we focus on the case of state tomography. seed params_dict.get('seed', 0)
As the number of free parameters that define quantum states and processes scale exponentially with the ;
number of subsystems, generally quantum tomography is a non-scalable protocol [36]. In particular, quan- L params_dict.get('mu', ©.0)
tum state tomography (QST) suffers from two bottlenecks related to its two main parts. The first concerns
with the large data one needs to collect to perform tomography; the second concerns with numerically tomography_labels lone:
searching in an exponentially large space fora density matrix that is consistent with the data. tomography_labels measurements.MeasurementStore. load_labels(measurement_store_path)

There have been various approaches over the years to improve the scalability of QST, as compared to . tamac remhy. Labals (tomography. labels)
full QST [90, 45, 9]. Focusing on the data collection bottleneck, to reduce the resources required, prior in- label_1 igt phy— Y £ 1 lg,_ (goxgg e lele laMnunIntuceases) I uce s Ridx]
formation about the unknown quantum state is often assumed. For example, in compressed sensing QST num_labels len(label_list)
[36, 46], it is assumed that the density matrix of the system is low-rank. In neural network QST [86, 10, 87],
one assumes real and positive wavefunctions, which occupy a restricted place in the landscape of quan-
tum states. Extensions of neural networks to complex wave-functions, or the ability to represent density
matrices of mixed states, have been further considered in the literature, after proper reparameterization of projector_dict = {}
the Restricted Boltzmann machines [86]. The prior information considered in these cases is that they are start :
characterized by structured quantum states, which is the reason for the very high performances of neural =t min{nun_labels, store_load_batch_size)

projector_store_path

(gbity) qo » {qbits) Qv =
e Non-convex . : i) @ b ——— L
zat Iskit --— = —
* Low-rank factorization I ) o ]

{oivts) qv

e Acceleration (@bits) a

Q
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{qits) Qo

e

https://github.com/gidiko/MiFGD @ e
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